Abstract
In this short article, we non-perturbatively derive a recursive formula for the Green's function associated with finitely many point Dirac delta potentials in one dimension. We also extend this formula to the case for the Dirac delta potentials supported by regular curves embedded in two dimensional manifolds and for the Dirac delta potentials supported by two dimensional compact manifolds embedded in three dimensional manifolds. Finally, this formulation allows us to find the recursive formula of the Green's function for the point Dirac delta potentials in two and three dimensional Riemannian manifolds, where the renormalization of coupling constant is required.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.