Abstract
A recurrent radial basis function network (RBFN) based fuzzy neural network (FNN) control system is proposed to control the position of an X-Y-theta motion control stage using linear ultrasonic motors (LUSMs) to track various contours in this study. The proposed recurrent RBFN-based FNN combines the merits of self-constructing fuzzy neural network (SCFNN), recurrent neural network (RNN), and RBFN. Moreover, the structure and the parameter learning phases of the recurrent RBFN-based FNN are performed concurrently and on line. The structure learning is based on the partition of input space, and the parameter learning is based on the supervised gradient decent method using a delta adaptation law. The experimental results due to various contours show that the dynamic behaviors of the proposed recurrent RBFN-based FNN control system are robust with regard to uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.