Abstract

Artificial Neural Networks (NNWs) are appealing functions to substitute high dimensional and non-linear history-dependent problems in computational mechanics since they offer the possibility to drastically reduce the computational time. This feature has recently been exploited in the context of multi-scale simulations, in which the NNWs serve as surrogate model of micro-scale finite element resolutions. Nevertheless, in the literature, mainly the macro-stress–macro-strain response of the meso-scale boundary value problem was considered and the micro-structure information could not be recovered in a so-called localization step. In this work, we develop Recurrent Neural Networks (RNNs) as surrogates of the RVE response while being able to recover the evolution of the local micro-structure state variables for complex loading scenarios. The main difficulty is the high dimensionality of the RNNs output which consists in the internal state variable distribution in the micro-structure. We thus propose and compare several surrogate models based on a dimensionality reduction: (i) direct RNN modeling with implicit NNW dimensionality reduction, (ii) RNN with PCA dimensionality reduction, and (iii) RNN with PCA dimensionality reduction and dimensionality break down, i.e. the use of several RNNs instead of a single one. Besides, we optimize the sequential training strategy of the latter surrogate for GPU usage in order to speed up the process. Finally, through RNN modeling of the principal components coefficients, the connection between the physical state variables and the hidden variables of the RNN is revealed, and exploited in order to select the hyper-parameters of the RNN-based surrogate models in their design stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.