Abstract
Dengue fever modelling in endemic locations is critical to reducing outbreaks and improving vector-borne illness control. Early projections of dengue are a crucial tool for disease control because of the unavailability of treatments and universal vaccination. Neural networks have made significant contributions to public health in a variety of ways. In this paper, we develop a deep learning modelling using random forest (RF) that helps extract the features of the dengue fever from the text datasets. The proposed modelling involves the data collection, preprocessing of the input texts, and feature extraction. The extracted features are studied to test how well the feature extraction using RF is effective on dengue datasets. The simulation result shows that the proposed method achieves higher degree of accuracy that offers an improvement of more than 12% than the existing methods in extracting the features from the input datasets than the other feature extraction methods. Further, the study reduces the errors associated with feature extraction that is 10% lesser than the other existing methods, and this shows the efficacy of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evidence-Based Complementary and Alternative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.