Abstract

Most ML-based applications for COVID-19 assess the general conditions of a patient trained and tested on cohorts of patients collected over a short period of time and are capable of providing an alarm a few days in advance, helping clinicians in emergency situations, monitor hospitalised patients and identify potentially critical situations at an early stage. However, the pandemic continues to evolve due to new variants, treatments, and vaccines; considering datasets over short periods could not capture this aspect. In addition, these applications often avoid dealing with the uncertainty associated with the prediction provided by machine learning models, potentially causing costly mistakes. In this work, we present a system based on Recurrent Neural Networks (RNN) for the daily estimate of the prognosis of COVID-19 patients that is built and tested using data collected over a long period of time. Our system achieves high predictive performance and uses an algorithm to effectively determine and discard those patients for whom RNN cannot predict the prognosis with sufficient confidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.