Abstract
Speech separation is a fundamental problem in speech and signal processing. A particular challenge is monaural separation of cochannel speech, or a two-talker mixture, in a reverberant environment. In this paper, we study recurrent neural networks (RNNs) with long short-term memory (LSTM) in separating and enhancing speech signals in reverberant cochannel mixtures. Our investigation shows that RNNs are effective in separating reverberant speech signals. In addition, RNNs significantly outperform deep feedforward networks based on objective speech intelligibility and quality measures. We also find that the best performance is achieved when the ideal ratio mask (IRM) is used as the training target in comparison with alternative training targets. While trained using reverberant signals generated by simulated room impulse responses (RIRs), our model generalizes well to conditions where the signals are generated by recorded RIRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.