Abstract
Data-driven techniques, especially artificial intelligence (AI) based deep learning (DL) techniques, have attracted more and more attention in the manufacturing sector because of the rapid growth of the industrial Internet of Things (IoT) and Big Data. Tremendous researches of DL techniques have been applied in machine health monitoring, but still very limited works focus on the application of DL on the Remaining Useful Life (RUL) prediction. Precise RUL prediction can significantly improve the reliability and operational safety of industrial components or systems, avoid fatal breakdown and reduce the maintenance costs. This paper reviews and compares the state-of-the-art DL approaches for RUL prediction focusing on Recurrent Neural Networks (RNN) and its variants. It has been observed from the results for a publicly available dataset that Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) networks outperform the basic RNNs, and the number of the network layers affects the performance of the prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.