Abstract
In this paper, we study language models based on recurrent neural networks on three databases in two languages. We implement basic recurrent neural networks (RNN) and refined RNNs with long short-term memory (LSTM) cells. We use the corpora of Penn Tree Bank (PTB) and AMI in English, and the Academia Sinica Balanced Corpus (ASBC) in Chinese. On ASBC, we investigate word-based and character-based language models. For character-based language models, we look into the cases where the inter-word space is treated or not treated as a token. In summary, we report and comment on the performance of RNN language models with different databases, network topology, language, and granularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.