Abstract

Human Action Recognition has been an active research topic since early 1980s due to its promising applications in many domains like video indexing, surveillance, gesture recognition, video retrieval and human-computer interactions where the actions in the form of videos or sensor datas are recognized. The extraction of relevant features from the video streams is the most challenging part. With the emergence of advanced artificial intelligence techniques, deep learning methods are adopted to achieve the goal. The proposed system presents a Recurrent Neural Network (RNN) methodology for Human Action Recognition using star skeleton as a representative descriptor of human posture. Star skeleton is the process of jointing the gross contour extremes of a body to its centroid. To use star skeleton as feature for action recognition, the feature is defined as a five-dimensional vector in star fashion because the head and four limbs are usually local extremes of human body. In our project, we assumed an action is composed of a series of star skeletons overtime. Therefore, images expressing human action which are time-sequential are transformed into a feature vector sequence. Then the feature vector sequence must be transformed into symbol sequence so that RNN can model the action. RNN is used because the features extracted are time dependent

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call