Abstract

An adaptive integral sliding mode controller is proposed to maximize wind power extraction by maintaining the optimum rotation speed of wind turbine. In the proposed controller, an integral sliding mode control law is designed to track the optimum turbine rotation speed based on a recurrent neural network (RNN) that is used to identify the uncertain wind turbine dynamics. An online update algorithm is then derived to update the weights of the RNN in real time and hence to facilitate the maximum power extraction control. The stability of the overall control system is guaranteed in the sense of Lyapunov stability theory. Comparative experimental results demonstrate that the proposed controller outperforms a conventional control method in tracking the optimum turbine rotation speed and extracting the maximum wind power despite system uncertainties and high nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.