Abstract

This paper describes an identification process for a class of discrete-time nonlinear systems, which includes the Xilinx system generator software and the process is implemented in a Virtex 7 (V7) field programmable gate array (FPGA). This procedure consists of programming a discrete-time nonlinear plant where the dynamics of this plant is reproduced by a discrete-time recurrent high order neural network (RHONN). The neural network is trained on-line with the extended Kalman filter algorithm where the associated state and measurement noises covariance matrices are composed by the coupled variance between the plant states. Additionally, a sliding window-based method for dynamical modeling of nonstationary systems is presented in order to improve the neural identification process. This identification process is implemented on a Virtex 7 (V7) FPGA using Xilinx system generator software where are programed in this FPGA: the discrete-time dynamics of the two degrees of freedom (2DOF) robot manipulator, the RHONN, the extended Kalman filter (EKF) training algorithm and the sliding window-based method. The obtained results from the FPGA are compared with the results obtained from Matlab/SImulink in order to validate the identification process for the present proposal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call