Abstract

This paper presents a model of recurrent multinomial sequences. Though there exists a quite considerable literature on modeling autocorrelation in numerical data and sequences of categorical outcomes, there is currently no systematic method of modeling patterns of recurrence in categorical sequences. This paper develops a means of discovering recurrent patterns by employing a more restrictive Markov assumption. The resulting model, which I call the recurrent multinomial model, provides a parsimonious representation of recurrent sequences, enabling the investigation of recurrences on longer time scales than existing models. The utility of recurrent multinomial models is demonstrated by applying them to the case of conversational turn-taking in meetings of the Federal Open Market Committee (FOMC). Analyses are effectively able to discover norms around turn-reclaiming, participation, and suppression and to evaluate how these norms vary throughout the course of the meeting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.