Abstract

Gene regulatory networks (GRNs) drive developmental and cellular differentiation, and variation in their architectures gives rise to morphological diversity. Pioneering studies in Aspergillus fungi, coupled with subsequent work in other filamentous fungi, have shown that the GRN governed by the BrlA, AbaA, and WetA proteins controls the development of the asexual fruiting body or conidiophore. A specific aspect of conidiophore development is the production of phialides, conidiophore structures that are under the developmental control of AbaA and function to repetitively generate spores. Fungal genome sequencing has revealed that some filamentous fungi lack abaA, and also produce asexual structures that lack phialides, raising the hypothesis that abaA loss is functionally linked to diversity in asexual fruiting body morphology. To examine this hypothesis, we carried out an extensive search for the abaA gene across 241 genomes of species from the fungal subphylum Pezizomycotina. We found that abaA was independently lost in four lineages of Eurotiomycetes, including from all sequenced species within the order Onygenales, and that all four lineages that have lost abaA also lack the ability to form phialides. Genetic restoration of abaA from Aspergillus nidulans into Histoplasma capsulatum, a pathogenic species from the order Onygenales that lacks an endogenous copy of abaA, did not alter Histoplasma conidiation morphology but resulted in a marked increase in spore viability. We also discovered that species lacking abaA contain fewer AbaA binding motifs in the regulatory regions of orthologs of some AbaA target genes, suggesting that the asexual fruiting body GRN of organisms that have lost abaA has likely been rewired. Our results provide an illustration of how repeated losses of a key regulatory transcription factor have contributed to the diversity of an iconic fungal morphological trait.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.