Abstract

The purpose of this paper is to design tools that quantify the structure of the nonsymmetrical component of the solar magnetic field. With the Fourier transform and the machine learning identification of recurrent objects, we define the 27-day component of solar proxies and recurrent large sunspot structures (ReLaSS), respectively. These two closely related characteristics are established to represent different components of the asymmetry of the solar magnetic field. We derive that the 27-day component and ReLaSS have anticorrelated since 1970 after dozens of years of a strong correlation. The persistence of the correlation sign during few solar cycles reflects yet unknown regularities of solar activity. The contribution of both proxies to the nonsymmetry of solar activity is shown to be lower in 1990–2010 than ∼100 years earlier. This property may be the trace of the asymmetry at the scales that are longer than the centennial Gleissberg cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call