Abstract
Modeling the aging process of human faces is important for cross-age face verification and recognition. In this paper, we propose a Recurrent Face Aging (RFA) framework which takes as input a single image and automatically outputs a series of aged faces. The hidden units in the RFA are connected autoregressively allowing the framework to age the person by referring to the previous aged faces. Due to the lack of labeled face data of the same person captured in a long range of ages, traditional face aging models split the ages into discrete groups and learn a one-step face transformation for each pair of adjacent age groups. Since human face aging is a smooth progression, it is more appropriate to age the face by going through smooth transitional states. In this way, the intermediate aged faces between the age groups can be generated. Towards this target, we employ a recurrent neural network whose recurrent module is a hierarchical triple-layer gated recurrent unit which functions as an autoencoder. The bottom layer of the module encodes the input to a latent representation, and the top layer decodes the representation to a corresponding aged face. The experimental results demonstrate the effectiveness of our framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.