Abstract

Objective: We investigate the design of deep recurrent neural networks for detecting sleep stages from single channel EEG signals recorded at home by non-expert users. We report the effect of data set size, architecture choices, regularization, and personalization on the classification performance.Methods: We evaluated 58 different architectures and training configurations using three-fold cross validation.Results: A network consisting of convolutional (CONV) layers and long short term memory (LSTM) layers can achieve an agreement with a human annotator of Cohen's Kappa of ~0.73 using a training data set of 19 subjects. Regularization and personalization do not lead to a performance gain.Conclusion: The optimal neural network architecture achieves a performance that is very close to the previously reported human inter-expert agreement of Kappa 0.75.Significance: We give the first detailed account of CONV/LSTM network design process for EEG sleep staging in single channel home based setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.