Abstract

Automatic pain intensity estimation possesses a significant position in healthcare and medical field. Traditional static methods prefer to extract features from frames separately in a video, which would result in unstable changes and peaks among adjacent frames. To overcome this problem, we propose a real-time regression framework based on the recurrent convolutional neural network for automatic frame-level pain intensity estimation. Given vector sequences of AAM-warped facial images, we used a sliding-window strategy to obtain fixed-length input samples for the recurrent network. We then carefully design the architecture of the recurrent network to output continuous-valued pain intensity. The proposed end-to-end pain intensity regression framework can predict the pain intensity of each frame by considering a sufficiently large historical frames while limiting the scale of the parameters within the model. Our method achieves promising results regarding both accuracy and running speed on the published UNBC-McMaster Shoulder Pain Expression Archive Database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.