Abstract
In this paper, we review several recurrence relations and identities established for the single and product moments of order statistics from an arbitrary continuous distribution. We point out the interrelationships between many of these recurrence relations. We discuss the results giving the bounds for the number of single and double integrals needed to be evaluated in order to compute the first, second and product moments of order statistics in a sample of size n from an arbitrary continuous distribution, given these moments in samples of sizes n-1 and less. Improvements of these bounds for the case of symmetric continuous distributions are also discussed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.