Abstract

Recent evidence indicates that anodal transcranial direct current stimulation (tDCS) can selectively alter the EMG/force relationship of agonist arm muscles; however, the mechanisms mediating those changes are less clear. The purpose of this study was to evaluate the effect of anodal tDCS on motor unit synchronization by using a sophisticated non-linear EMG analysis called recurrence quantification analysis (RQA). Surface EMG signals were collected from the biceps brachii muscle of eighteen healthy young adults (9 tDCS and 9 control) at various force levels (12.5%, 25%, 37.5%, and 50% maximum) before and after the application of anodal tDCS over the primary motor cortex. RQA was employed to quantify the changes in percentage of determinism (% DET) and laminarity (% LAM) of the surface EMG signals, which are surrogate measures of motor unit synchronization. RQA analyses indicated that the changes in % DET and % LAM scores were significantly higher in the tDCS group than in the control group (p < 0.05) and this effect was particularly pronounced at higher force levels. The results of this study provide novel evidence supporting that anodal tDCS significantly alters motor unit firing strategies (i.e., the degree of synchronization) of the biceps brachii muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call