Abstract
AbstractSudden cardiac arrest (CA) is a common cause of death, and cardiopulmonary resuscitation (CPR) can improve the survival rate of CA patients. However, the in-depth study of the pathophysiological mechanism of patients during CPR is limited, and the characterization of the dynamic structure behind the electrical activities of the cardiovascular system from the perspective of nonlinear time series analysis is still lacking. This study used recurrence quantitative analysis (RQA) to quantify changes in the cardiovascular system during CPR and analyze its pathophysiological mechanisms. In artificially constructed porcine CA models, data were divided into four periods: Baseline, ventricular fibrillation (VF), CPR, and Recovery of spontaneous circulation (ROSC). RQA parameters of electrocardiogram (ECG) were analyzed to compare the changes in cardiovascular system dynamics in four periods. The RR, ENTR, and TT of ECG were significantly higher than those of VF and CPR at Baseline and ROSC, indicating that the period and stability of electrical activity of the cardiovascular system were significantly reduced under pathological conditions. The RQA is valid in cardiovascular system analysis in CA patients. This may be useful for future research on the diagnosis and prediction of CA.KeywordsCardiac arrestCardiopulmonary resuscitationRecurrence quantitative analysisElectrocardiogram
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.