Abstract

We propose a classification method based on recurrence quantification analysis (RQA) combined with support vector machines (SVM). This method combines in an effective way various quantitative descriptors to allow a refined discrimination among dynamical non linear systems that presents dynamics which are very similar to each other. To show how effective this methodology is, firstly, based on synthetic data, it is applied on time series generated from the logistic map with nearby parameter values and in the chaotic regime. Next, it is applied to human biosignals, namely, heart rate variability (HRV) time series obtained from four groups of individuals (premature newborns, full-term newborns, healthy young adults, and adults with severe coronary disease). Roughly the proposed methodology works as follows: The signals are transformed into recurrence plots (RP) and a set of RQA statistical features (recurrence rate, determinism, averaged and maximal diagonal line lengths, entropy, laminarity, trapping time, and length of longest vertical line) are extracted to form the input vector for a SVM classifier. Results show that the method discriminates groups of different ages with classification accuracy better than $$75\,\%$$ . Given that heart rate continuously fluctuates over time and reflects different mechanisms to maintain cardiovascular homeostasis of an individual, the results obtained may allow to draw important information on the autonomic control of circulation in normal and diseased conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.