Abstract

We study the simple random walk on the Uniform Infinite Half-Plane Map, which is the local limit of critical Boltzmann planar maps with a large and simple boundary. We prove that the simple random walk is recurrent, and that the resistance between the root and the boundary of the hull of radius r is at least of order logr. This resistance bound is expected to be sharp, and is better than those following from previous proofs of recurrence for nonbounded-degree planar maps models. Our main tools are the self-duality of uniform planar maps, a classical lemma about duality of resistances and some peeling estimates. The proof shares some ideas with Russo–Seymour–Welsh theory in percolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.