Abstract
VERIFICATIONS of tectonic concepts1 concerning seafloor spreading are emerging in a manner that has direct bearing on earthquake prediction. Although the gross pattern of worldwide seismicity contributed to the formulation of the plate tectonic hypothesis, it is the space-time characteristics of this seismicity that may contribute more toward understanding the kinematics and dynamics of the driving mechanism long speculated to originate in the mantle. If the lithosphere is composed of plates that move essentially as rigid bodies, then there should be seismic edge effects associated with this movement. It is these interplate effects, especially seismic migration patterns, that we discuss here. The unidirectional propagation at constant velocity (80 km yr−1 east to west) for earthquakes (M≥7.2) on the Antblian fault for the period 1939 to 1956 (ref. 2) is one of the earliest observations of such a phenomenon. Similar studies3,4 of the Alaska Aleutian seismic zone and certain regions of the west coast of South America suggest unidirectional and recurring migrations of earthquakes (M≥7.7) occur in these areas. Between these two regions along the great transform faults of the west coast of North America, there is some evidence5 for unidirectional, constant velocity and recurrent migration of great earthquakes. The small population of earthquakes (M>7.2) in Savage's investigation5 indicates a large spatial gap along the San Andreas system in central California from 1830 to 1970. Previous work on the seismicity of this gap in central California indicates that the recurrence curves remain relatively constant, independent of large earthquakes, for periods up to a century6. Recurrence intervals for earthquakes along the San Andreas Fault have been calculated empirically by Wallace7 on the basis of geological evidence, surface measurements and assumptions restricted to the surficial seismic layer. Here we examine the evidence for recurrence of seismic migrations along the San Andreas fault system of central California for earthquakes of magnitude M≥5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.