Abstract

We present a Bayesian method that allows continuous updating the aperiodicity of the recurrence time distribution of large earthquakes based on a catalog with magnitudes above a completeness threshold. The approach uses a recently proposed renewal model for seismicity and allows the inclusion of magnitude uncertainties in a straightforward manner. Errors accounting for grouped magnitudes and random errors are studied and discussed. The results indicate that a stable and realistic value of the aperiodicity can be predicted in an early state of seismicity evolution, even though only a small number of large earthquakes has occurred to date. Furthermore, we demonstrate that magnitude uncertainties can drastically influence the results and can therefore not be neglected. We show how to correct for the bias caused by magnitude errors. For the region of Parkfield we find that the aperiodicity, or the coefficient of variation, is clearly higher than in studies which are solely based on the large earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call