Abstract

We study a three-wave truncation of the high-order nonlinear Schrödinger equation for deep-water waves (also named Dysthe equation). We validate the model by comparing it to numerical simulation; we distinguish the impact of the different fourth-order terms and classify the solutions according to their topology. This allows us to properly define the temporary spectral upshift occurring in the nonlinear stage of Benjamin-Feir instability and provides a tool for studying further generalizations of this model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call