Abstract

<p>Extreme events such as earthquakes, tsunamis, heat weaves, droughts, floods, heavy precipitation, or tornados -- affect the human communities and cause tremendous loss of property and wealth, but can be related to multiple and complex sources. For example, a flood is a natural event caused by many drivers such as extreme precipitation, soil moisture, or temperature. We are interested in understanding the direct and indirect coupling between flood events with different climatological and hydrological drivers such as soil moisture and temperature.</p><p>We use multivariate recurrence plot and recurrence quantification analysis as a powerful framework to study the couplings between the different systems, especially the direction of coupling. The standard delay-embedding method is not a suitable for the recurrence analysis of event-like data. Therefore, we apply the novel edit-distance method to compute recurrence plots of time series of flood events and use the standard recurrence plot method for the continuous varying time series such as soil moisture and temperature. The coupling analysis is performed using the mean conditional probabilities of recurrence derived from the different recurrence plots. We demonstrate this approach on a prototype system and apply it on the hydrological data. Using this approach we are able to indicate the coupling direction and lag between the different coupled systems.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.