Abstract

Results concerning recurrence and ergodicity are proved in an abstract Hilbert space setting based on the proof of Khintchine's recurrence theorem for sets, and on the Hilbert space characterization of ergodicity. These results are carried over to a non-commutative ∗-algebraic setting using the GNS-construction. This generalizes the corresponding measure theoretic results, in particular a variation of Khintchine's theorem for ergodic systems, where the image of one set overlaps with another set, instead of with itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.