Abstract
Recurrence analysis of phase space trajectories reconstructed from scalar time series—a relatively new technique in the field of combustion dynamics—is proposed for analyzing combustion noise data. A demonstration based on the implementation of this analysis on combustion noise data acquired in experiments on an open bluff-body stabilized turbulent premixed flame is presented in this article. A combined analysis methodology involving conventional techniques: spectral analysis and proper orthogonal decomposition, together with recurrence analysis is found to be effective in identifying features embedded in combustion noise signals. In particular, the new perspective provides insights into the temporal transitions of pressure fluctuations between noise and periodic dynamics. The recurrence analysis technique, which is found to be instrumental in extracting the dynamical makeup of combustion noise signals in this work, is foreseen to be greatly beneficial for the analysis of experimental and numerical results on turbulent flows and turbulent combustion—processes that often involve an interplay between noise and deterministic dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.