Abstract

AbstractA newly developed kind of layered clay, rectorite (REC), has been used to yield intercalated or exfoliated thermoplastic polyurethane rubber (TPUR) nanocomposites by melt‐processing intercalation. Because of the swollen layered structure of REC, similar to that of montmorillonite, organic rectorites (OREC) can also be obtained through ion‐exchange reaction with two different quaternary ammonium salts (QAS1, QAS2) and benzidine (QAS3). The microstructure and dispersibility of OREC layers in TPUR matrix were examined by X‐ray diffraction and transmission electron microscopy, which revealed not only that the composites with lower amounts of clay are intercalation or part exfoliation nanocomposites, but also that the mechanical properties of the composites were substantially enhanced. The maximum ultimate tensile strength for TPUR/OREC nanocomposites appeared at 2 wt % OREC loading. With increasing OREC contents, the tear strength of the composites increased significantly. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 608–614, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.