Abstract

Automatic rib fracture recognition from chest X-ray images is clinically important yet challenging due to weak saliency of fractures. Weakly Supervised Learning (WSL) models recognize fractures by learning from large-scale image-level labels. In WSL, Class Activation Maps (CAMs) are considered to provide spatial interpretations on classification decisions. However, the high-responding regions, namely Supporting Regions of CAMs may erroneously lock to regions irrelevant to fractures, which thereby raises concerns on the reliability of WSL models for clinical applications. Currently available Mixed Supervised Learning (MSL) models utilize object-level labels to assist fitting WSL-derived CAMs. However, as a prerequisite of MSL, the large quantity of precisely delineated labels is rarely available for rib fracture tasks. To address these problems, this paper proposes a novel MSL framework. Firstly, by embedding the adversarial classification learning into WSL frameworks, the proposed Biased Correlation Decoupling and Instance Separation Enhancing strategies guide CAMs to true fractures indirectly. The CAM guidance is insensitive to shape and size variations of object descriptions, thereby enables robust learning from bounding boxes. Secondly, to further minimize annotation cost in MSL, a CAM-based Active Learning strategy is proposed to recognize and annotate samples whose Supporting Regions cannot be confidently localized. Consequently, the quantity demand of object-level labels can be reduced without compromising the performance. Over a chest X-ray rib-fracture dataset of 10966 images, the experimental results show that our method produces rational Supporting Regions to interpret its classification decisions and outperforms competing methods at an expense of annotating 20% of the positive samples with bounding boxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.