Abstract

The effect of electric field induced electron transfer on the rectification properties of molecular rectifiers based on charge transfer complexes of tetrakis(dimethylamino)ethane (TDAE) with acceptor molecules was explored. The current-voltage curves and the rectification ratios (RR) for two different molecular rectifiers were obtained using a direct ab initio method at M06/LACVP(d) level of theory in the range from -2 to +2 V. The highest RR of 25.7 was determined for the complex of TDAE with 2-nitropyrene-4,5,9,10-tetraone at 0.5 V (D1), while another rectifier [complex of TDAE with 2,7-dimethyl nitropyrene-4,5,9,10-tetraone (D2)] showed a maximum RR of only 2.9 at 0.3 V. The electric field induced electron transfer occurring in D1 creates a one-way conducting channel consisting of two SOMOs involving the entire D1 complex. In the case of D2, no electron transfer occurs at the applied bias voltages due to the relatively high energy difference between HOMO and LUMO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.