Abstract

A planar nanodevice, known as the self-switching diode (SSD) has been demonstrated to rectify electromagnetic signals at microwave and terahertz frequencies. This diode has a non-linear current-voltage (I-V) characteristic due to the structure of the device which consists of asymmetric nanochannel. To further explore the properties of SSD rectifiers, in this work, silicon-based SSDs with different dielectric materials that filled up the trenches of the devices were simulated using ATLAS device simulator under the temperature range of 250 K–500 K. The results showed that the rectification performance of the SSDs was deteriorated with increasing temperature for all dielectric materials which might be due to the thermal-activated electronic transport behavior of the devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.