Abstract

Abstract Consider an $ m $-dimensional area minimizing mod$ (2Q) $ current $ T $, with $ Q\in {\mathbb {N}} $, inside a sufficiently regular Riemannian manifold of dimension $ m + 1 $. We show that the set of singular density-$ Q $ points with a flat tangent cone is $ (m-2) $-rectifiable. This complements the thorough structural analysis of the singularities of area-minimizing hypersurfaces modulo $ p $ that has been completed in the series of works of De Lellis–Hirsch–Marchese–Stuvard and De Lellis–Hirsch–Marchese–Stuvard–Spolaor, and the work of Minter–Wickramasekera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.