Abstract

Gaussian process regression (GPR) is a powerful machine learning method which has recently enjoyed wider use, in particular in physical sciences. In its original formulation, GPR uses a square matrix of covariances among training data and can be viewed as linear regression problem with equal numbers of training data and basis functions. When data are sparse, avoidance of overfitting and optimization of hyperparameters of GPR are difficult, in particular in high-dimensional spaces where the data sparsity issue cannot practically be resolved by adding more data. Optimal choice of hyperparameters, however, determines success or failure of the application of the GPR method. We show that parameter optimization is facilitated by rectangularization of the defining equation of GPR. On the example of a 15-dimensional molecular potential energy surface we demonstrate that this approach allows effective hyperparameter tuning even with very sparse data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.