Abstract

The propagation of guided waves in a rectangular geometry having impedance boundary conditions is investigated. An impedance compatibility relation is derived that must be satisfied in order that a separable modal solution exists for a given impedance configuration. Several new rectangular waveguides are developed; among them are 1) a tall rectangular waveguide operating in a dominant H/sub 10/ mode with no H/sub 0N/ modes; 2) a rectangular waveguide with two parallel anisotropic impedance surfaces; 3) a rectangular waveguide with two parallel walls having isotropic impedance surfaces, the other two walls being anisotropic; 4) a rectangular waveguide supporting only E modes; and 5) rectangular coaxial systems containing impedance surfaces. The modal structure of rectangular waveguides with impedance boundary conditions offers advantages over the conventional waveguide. The potential of oversizing for low-loss and high-power applications is enhanced because of the additional modal control provided by the impedance surfaces. Other applications are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call