Abstract

We characterize asymptotic collective behavior of rectangular random matrices, the sizes of which tend to infinity at different rates. It appears that one can compute the limits of all noncommutative moments (thus all spectral properties) of the random matrices we consider because, when embedded in a space of larger square matrices, independent rectangular random matrices are asymptotically free with amalgamation over a subalgebra. Therefore, we can define a “rectangular-free convolution”, which allows to deduce the singular values of the sum of two large independent rectangular random matrices from the individual singular values. This convolution is linearized by cumulants and by an analytic integral transform, that we called the “rectangular R-transform”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.