Abstract

For a thin film heat flux gage designed to provide both rapid response and long use time, initial calibrations using standard techniques indicated differences between the literature and the estimated properties. In order to estimate thermophysical properties and subsequently the gage sensitivity, an analytical model of the response to a step change in heating current was developed. Starting from a Green’s function description, the model is reduced to three algebraic expressions, which correspond to the early, middle, and late time regimes. These expressions provide a framework for least-squares estimates of gage parameters. This provides an in-situ, nondestructive measurement of the thermal impedance of the substrate. There is very good agreement between the model and the experimental data. The estimated parameter values demonstrated good to excellent repeatability and good agreement with both new literature data and results from destructive property measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.