Abstract

AbstractWe provide a new method for extending results on finite planar graphs to the infinite case. Thus a result of Ungar on finite graphs has the following extension: Every infinite, planar, cubic, cyclically 4‐edge‐connected graph has a representation in the plane such that every edge is a horizontal or vertical straight line segment, and such that no two edges cross. A result of Tamassia and Tollis extends as follows: Every countably infinite planar graph is a subgraph of a visibility graph. Furthermore, every locally finite, 2‐connected, planar graph is a visibility graph. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 257–265, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.