Abstract

We consider finite rectangular algebras of finite type as tree recognizers. The type is represented by a ranked alphabet Σ. We determine the varieties of finite rectangular Σ-algebras and show that they form a Boolean lattice in which the atoms are minimal varieties of finite Σ-algebras consisting of projection algebras. We also describe the corresponding varieties of Σ-tree languages and compare them with some other varieties studied in the literature. Moreover, we establish the solidity properties of these varieties of finite algebras and tree languages. Rectangular algebras have been previously studied by R. Pöschel and M. Reichel (1993), and we make use of some of their results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.