Abstract
We consider the estimation of aggregates over a data stream of multidimensional axis-aligned rectangles. Rectangles are a basic primitive object in spatial databases, and efficient aggregation of rectangles is a fundamental task. The data stream model has emerged as a de facto model for processing massive databases in which the data resides in external memory or the cloud and is streamed through main memory. For a point p, let n(p) denote the sum of the weights of all rectangles in the stream that contain p. We give near-optimal solutions for basic problems, including (1) the k-th frequency moment Fk = ∑ points p|n(p)|k, (2)~the counting version of stabbing queries, which seeks an estimate of n(p) given p, and (3) identification of heavy-hitters, i.e., points p for which n(p) is large. An important special case of Fk is F0, which corresponds to the volume of the union of the rectangles. This is a celebrated problem in computational geometry known as Klee's measure problem, and our work yields the first solution in the streaming model for dimensions greater than one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.