Abstract

Endoscopic examination has proven effective in both detecting and preventing colorectal cancer; however, only about a quarter of eligible patients undergo screening. Even if the compliance rate increased, limited endoscopic capacity and cost would be prohibitive. There is a need for an accurate method to target colonoscopy to those most at risk of harboring colonic neoplasia. Exploiting field carcinogenesis seems to be a promising avenue. Our group recently reported that an early increase in blood supply (EIBS) is a reliable marker of field carcinogenesis in experimental models. We now investigate whether in situ detection of EIBS in the rectum can predict neoplasia elsewhere in the colon. We developed a novel polarization-gated spectroscopy fiber-optic probe that allows depth-selective interrogation of microvascular blood content. Using the probe, we examined the blood content in vivo from the rectal mucosa of 216 patients undergoing screening colonoscopy. Microvascular blood content was increased by approximately 50% in the endoscopically normal rectal mucosa of patients harboring advanced adenomas when compared with neoplasia-free patients irrespective of lesion location. Demographic factors and nonneoplastic lesions did not confound this observation. Logistic regression using mucosal oxyhemoglobin concentration and patient age resulted in a sensitivity of 83%, a specificity of 82%, and an area under the receiver operating characteristic curve of 0.88 for the detection of advanced adenomas. Increased microvascular blood supply in the normal rectal mucosa is associated with the presence of clinically significant neoplasia elsewhere in the colon, supporting the development of rectal EIBS as a colon cancer risk-stratification tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.