Abstract

The recrystallization behavior of lath martensite during tempering was investigated in high-chromium martensitic steels by means of hardness testing, optical and transmission electron microscopy. The role of carbide particles on the recrystallization was also discussed in terms of the grain boundary pinning effect. The hardness of tempered specimens was plotted as a function of the tempering parameter, T(logt+20), for a low-carbon steel (Fe-9Cr-0.1C mass%) and an ultra-low carbon steel (Fe-9Cr-1Ni-0.006C mass%). The low-carbon steel exhibited gradual softening with recovery but did not undergo recrystallization. However, the ultra-low carbon steel suffered abrupt softening owing to the discontinuous recrystallization of lath martensite. Microstructural observations in the ultra-low carbon steel indicated that the recrystallization of lath martensite occurs with the 'bulge nucleation and growth (BNG) mechanism'. The possibility of recrystallization via this mechanism depends upon both the spacing of carbide particles on grain boundaries and the dislocation density of martensite. An energetic analysis on the formation of a recrystallized grain revealed the critical carbide spacing minimum required for the occurrence of recrystallization as a function of dislocation density. In the case of the low-carbon steel, carbide precipitates on grain boundaries with spacing smaller than the critical value, thus suppressing recrystallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.