Abstract

Optimum thermomechanically controlled process parameters have been established for the production of Ti-V-N microalloyed high-strength low-alloy (HSLA) steels. On the basis of laboratory simulation and full-scale processing, it has been shown that nitrogen is an essential alloying element addition and full appreciation of its effects leads to the ability to utilize high nitrogen steel in connection with hot rolling in a high-temperature regime to produce HSLA products with very favorable combinations of yield strength and toughness. The effects of reheating temperature, rolling reduction, cooling rate, and finish-cooling temperature (FCT) on the ferrite grain size and mechanical properties have been examined. It has been shown that the potential for precipitation strengthening is dependent on vanadium, nitrogen, and cooling parameters. Accelerated cooling (ACC) prevents precipitation of vanadium nitrides in austenite and enhances both grain refinement and precipitation strengthening. By adjusting nitrogen content and processing parameters, a yield strength of 500 MPa and impact transition temperature (ITT) below -60 ‡C can be obtained in the as-hot-rolled condition in Ti-V-N steels, using high finish-temperature hot rolling and accelerated cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call