Abstract

The high-temperature stability and good mechanical strength of tungsten (W) alloys are highly desirable for a wide range of fusion applications, which can be achieved by dispersion strengthening. In this paper, TaC dispersion effects on the thermal stabilities, tensile properties and thermal shock resistances have been investigated. A hot-rolled W-1.0 wt% TaC plate has been fabricated which contains the high tensile strength and elongation. Nanosized particles in the W matrix improve the recrystallization temperature to about 1400 °C and the ultimate tensile strength to 571 MPa at 500 °C through hindering grain boundary migration, pinning dislocations and refining grains. The effects of edge-localized mode like transient heat events on the rolled and recrystallized W-1.0 wt% TaC alloys were investigated systematically. The cracking threshold (100 shots) at room temperature is in the range of 0.33–0.44 GW/m2 for the rolled W-1.0 wt% TaC. Recrystallization degrades mechanical strength and makes the material more prone to thermal shock damages. Coarse Ta2O5 and Ta-Cx-Oy particles are easy to fracture and introduce a preferential crack initiation in W matrix during cyclic heat loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.