Abstract

L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes, remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor, poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria compared to InlK− bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles.

Highlights

  • Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, a severe food-borne human infection with an overall mortality rate of 30% [1]

  • We established that L. monocytogenes use InlK to interact with a mammalian cytoplasmic protein named Major Vault Protein (MVP)

  • MVP has been implicated in diverse cellular processes, its role remains elusive

Read more

Summary

Introduction

Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, a severe food-borne human infection with an overall mortality rate of 30% [1]. L. monocytogenes has evolved efficient strategies to survive in the intestine and cross the intestinal, bloodbrain and placental barriers [2,3] leading to clinical features of the disease that include gastroenteritis, septicemia, central nervous system infections, and mother-to-child infections [4]. Inside the host, this facultative intracellular bacterium is able to invade phagocytic and non-phagocytic cells, replicate intracellularly, and spread directly from cell-to-cell, thereby escaping the immune response [3]. While the role of ActA in autophagy is established, the role that many other surface proteins play during Listeria infection remains fragmentary [15]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.