Abstract

MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 409:213-228 (2010) - DOI: https://doi.org/10.3354/meps08586 Recruitment of striped bass in Chesapeake Bay: spatial and temporal environmental variability and availability of zooplankton prey E. J. Martino1,2,*, E. D. Houde1 1University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, Solomons, Maryland 20688, USA 2Present address: National Oceanic and Atmospheric Administration, Cooperative Oxford Laboratory, Oxford, Maryland 21654, USA *Email: ed.martino@noaa.gov ABSTRACT: Causes of recruitment variability in young-of-the-year (YOY) striped bass Morone saxatilis from Chesapeake Bay were investigated based on (1) surveys from 2001 to 2003 to document spatio-temporal variability in abundance of larval striped bass, zooplankton prey, and feeding success of larvae; (2) a synthetic analysis (1996, 1998, 1999, 2001 to 2003) to describe how environmental factors and prey affect recruitment success; and (3) a 10 yr analysis (1993 to 2002) of inter-annual differences in spatial and temporal patterns of copepods and cladocera eaten by striped bass larvae. Striped bass YOY recruitment levels varied >11-fold in the 6 years examined. In those years, mean daily freshwater flows from the Susquehanna River to the bay in March and April varied >2-fold and controlled distribution and apparent survival of striped bass larvae. Strong recruitments of YOY striped bass were associated with matches in space and time of larval striped bass and high concentrations of zooplankton prey, especially the copepod Eurytemora affinis and cladoceran Bosmina longirostris. The strongest year classes (1996, 2003) were produced in years of high freshwater flow, characterized by a high abundance of feeding-stage larvae and a spatio-temporal match between peak abundance of larvae and zooplankton prey. Enhanced feeding opportunities were most pronounced in high freshwater-flow years (1996, 1998, 2003), when larvae and zooplankton prey were strongly associated with, and apparently retained near, the estuarine turbidity maximum. First-feeding larvae fed more successfully in a high-flow year (2003; prey incidence 91%) than in a drier year (2001; prey incidence 35%). A regression model that may have forecasting potential was developed to describe recruitment of YOY striped bass for the years from 1985 to 2006. The model includes spring freshwater flow and air temperatures to predict age-0 striped bass recruitment strength (R2 = 0.65). Flow and temperature control environmental and hydrographic conditions that strongly influence spatio-temporal overlap of larval striped bass and zooplankton. The model provided accurate recruitment forecasts for 2007 and 2009, but was less successful in 2008, a year of exceptionally low recruitment. KEY WORDS: Chesapeake Bay · Striped bass · Recruitment variability · Larval fish · Zooplankton · Trophodynamics · Biophysical interactions Full text in pdf format PreviousNextCite this article as: Martino EJ, Houde ED (2010) Recruitment of striped bass in Chesapeake Bay: spatial and temporal environmental variability and availability of zooplankton prey. Mar Ecol Prog Ser 409:213-228. https://doi.org/10.3354/meps08586 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 409. Online publication date: June 23, 2010 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2010 Inter-Research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.