Abstract

Organization and segregation of replicated chromosomes are essential processes during cell division in all organisms. Similar to eukaryotes, bacteria possess centromere-like DNA sequences (parS) that cluster at the origin of replication and the structural maintenance of chromosomes (SMC) complexes for faithful chromosome segregation. In Bacillus subtilis, parS sites are bound by the partitioning protein Spo0J (ParB), and we show here that Spo0J recruits the SMC complex to the origin. We demonstrate that the SMC complex colocalizes with Spo0J at the origin and that insertion of parS sites near the replication terminus targets SMC to this position leading to defects in chromosome organization and segregation. Consistent with these findings, the subcellular localization of the SMC complex is disrupted in the absence of Spo0J or the parS sites. We propose a model in which recruitment of SMC to the origin by Spo0J-parS organizes the origin region and promotes efficient chromosome segregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.