Abstract

N-terminally green fluorescent protein (GFP)-tagged regulator of G protein signaling (RGS) 2 and RGS4 fusion proteins expressed in human embryonic kidney 293 cells localized to the nucleus and cytosol, respectively. They were selectively recruited to the plasma membrane by G proteins and correspondingly by receptors that activate those G proteins: GFP-RGS2 when coexpressed with Galphas, beta2-adrenergic receptor, Galphaq, or AT1A angiotensin II receptor, and GFP-RGS4 when coexpressed with Galphai2 or M2 muscarinic receptor. G protein mutants with reduced RGS affinity did not produce this effect, implying that the recruitment involves direct binding to G proteins and is independent of downstream signaling events. Neither agonists nor inverse agonists altered receptor-promoted RGS association with the plasma membrane, and expressing either constitutively activated or poorly activated G protein mutants produced effects similar to those of their wild-type counterparts. Thus, intracellular interactions between these proteins seem to be relatively stable and insensitive to the activation state of the G protein, in contrast to the transient increases in RGS-G protein association known to be caused by G protein activation in solution-based assays. G protein effects on RGS localization were mirrored by RGS effects on G protein function. RGS4 was more potent than RGS2 in promoting steady-state Gi GTPase activity, whereas RGS2 inhibited Gs-dependent increases in intracellular cAMP, suggesting that G protein signaling in cells is regulated by the selective recruitment of RGS proteins to the plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.