Abstract

Detectable splicing by the Saccharomyces cerevisiae mitochondrial bI3 group I intron RNA in vitro is shown to require both an intron-encoded protein, the bI3 maturase, and the nuclear-encoded protein, Mrs1. Both proteins bind independently to the bI3 RNA. The bI3 maturase binds as a monomer, whereas Mrs1 is a dimer in solution that assembles as two dimers, cooperatively, on the RNA. The active six-subunit complex has a molecular mass of 420 kDa, splices with a k(cat) of 0.3 min(-1), and binds the guanosine nucleophile with an affinity comparable to other group I introns. The functional bI3 maturase domain is translated from within the RNA that encodes the intron, has evolved a high-affinity RNA-binding activity, and is a member of the LAGLIDADG family of DNA endonucleases, but appears to have lost DNA cleavage activity. Mrs1 is a divergent member of the RNase H fold superfamily of dimeric DNA junction-resolving enzymes that also appears to have lost its nuclease activity and now functions as a tetramer in RNA binding. Thus, the bI3 ribonucleoprotein is the product of a process in which a once-catalytically active RNA now obligatorily requires two facilitating protein cofactors, both of which are compromised in their original functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.