Abstract
How the combination of positive and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here we explore one aspect of this question by expanding the theory of predator-mediated coexistence to include the potential role of facilitation between the predator and inferior competitor. To motivate and illustrate our simple model, we focus on sea-urchin-algae interactions in temperate rocky reef systems and incorporate recruitment facilitation, a common characteristic of marine systems. Specifically, the model represents sea urchin grazing on macroalgae, macroalgal competition with crustose coralline algae (CCA), and facilitation of sea urchin recruitment to CCA. These interactions generate alternative stable states, one dominated by macroalgae and the other by urchins, which do not occur when recruitment facilitation of urchins to CCA is ignored. Therefore, recruitment facilitation provides a possible mechanism for alternative kelp forest and urchin barren states in temperate marine systems, where storm events or harvesting of urchins or their predators can drive switches between states that are difficult to reverse. In systems with such dynamics, spatial management such as no-take marine reserves may play a crucial role in protecting community structure by increasing the resilience to shifts between states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.